Macrophage migration inhibitory factor in myocardial ischaemia/reperfusion injury.

نویسندگان

  • Tienush Rassaf
  • Christian Weber
  • Jürgen Bernhagen
چکیده

Acute myocardial infarction (AMI) remains one of the leading causes of death in the developed world. There is emerging evidence that the cytokine macrophage migration inhibitory factor (MIF) is a crucial player in AMI. Cardioprotection by MIF is likely to be a multifactorial phenomenon mediated by receptor-mediated signalling processes, intracellular protein-protein interactions, and enzymatic redox regulation. Co-ordinating several pathways in the ischaemic heart, MIF contributes to receptor-mediated regulation of cardioprotective AMP-activated protein kinase signalling, inhibition of pro-apoptotic cascades, and the reduction of oxidative stress in the post-ischaemic heart. Moreover, the cardioprotective properties of MIF are modulated by S-nitros(yl)ation. These effects in the pathophysiology of myocardial ischaemia/reperfusion injury qualify MIF as a promising therapeutic target in the future. We here summarize the findings of experimental and clinical studies and emphasize the therapeutic potential of MIF in AMI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardioprotection through S-nitros(yl)ation of macrophage migration inhibitory factor.

BACKGROUND Macrophage migration inhibitory factor (MIF) is a structurally unique inflammatory cytokine that controls cellular signaling in human physiology and disease through extra- and intracellular processes. Macrophage migration inhibitory factor has been shown to mediate both disease-exacerbating and beneficial effects, but the underlying mechanism(s) controlling these diverse functions ar...

متن کامل

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

Molecular Cardiology Cardioprotection Through S-Nitros(yl)ation of Macrophage Migration Inhibitory Factor

Background—Macrophage migration inhibitory factor (MIF) is a structurally unique inflammatory cytokine that controls cellular signaling in human physiology and disease through extra-and intracellular processes. Macrophage migration inhibitory factor has been shown to mediate both disease-exacerbating and beneficial effects, but the underlying mechanism(s) controlling these diverse functions are...

متن کامل

Macrophage migration inhibitory factor in cardiovascular disease.

The highly conserved and archetypical yet atypical cytokine macrophage migration inhibitory factor (MIF) fulfills pleiotropic immune functions in many acute and chronic inflammatory diseases. Recent evidence has emerged from both expression and functional studies to implicate MIF in various aspects of cardiovascular disease. The present review is aimed at providing a synopsis of the involvement...

متن کامل

Myocardial Expression of Macrophage Migration Inhibitory Factor in Patients with Heart Failure

Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory protein and contributes to several different inflammatory and ischemic/hypoxic diseases. MIF was shown to be cardioprotective in experimental myocardial ischemia/reperfusion injury and its expression is regulated by the transcription factor hypoxia-inducible factor (HIF)-1α. We here report on MIF expression in the failin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cardiovascular research

دوره 102 2  شماره 

صفحات  -

تاریخ انتشار 2014